【演講】2019/11/19 (二) @工四816 (智易空間),邀請到Prof. Geoffrey Li(Georgia Tech, USA)與Prof. Li-Chun Wang(NCTU, Taiwan) 演講「Deep Learning based Wireless Resource Allocation/Deep Learning in Physical Layer Communications/Machine Learning Interference Management」
IBM中心特別邀請到Prof. Geoffrey Li(Georgia Tech, USA)與Prof. Li-Chun Wang(NCTU, Taiwan)前來為我們演講,歡迎有興趣的老師與同學報名參加!
演講標題:Deep Learning based Wireless Resource Allocation/Deep Learning in Physical Layer Communications/Machine Learning Interference Management
演 講 者:Prof. Geoffrey Li與Prof. Li-Chun Wang
時 間:2019/11/19(二) 9:00 ~ 12:00
地 點:交大工程四館816 (智易空間)
活動報名網址:https://forms.gle/vUr3kYBDB2vvKtca6
報名方式:
費用:(費用含講義、午餐及茶水)
1.費用:(1) 校內學生免費,校外學生300元/人 (2) 業界人士與老師1500/人
2.人數:60人,依完成報名順序錄取(完成繳費者始完成報名程序)
※報名及繳費方式:
1.報名:請至報名網址填寫資料
2.繳費:
(1)親至交大工程四館813室完成繳費(前來繳費者請先致電)
(2)匯款資訊如下:
戶名: 曾紫玲(國泰世華銀行 竹科分行013)
帳號: 075506235774 (國泰世華銀行 竹科分行013)
匯款後請提供姓名、匯款時間以及匯款帳號後五碼以便對帳
※將於上課日發放課程繳費領據
聯絡方式:曾紫玲 Tel:03-5712121分機54599 Email:tzuling@nctu.edu.tw
Abstract:
1.Deep Learning based Wireless Resource Allocation
【Abstract】
Judicious resource allocation is critical to mitigating interference, improving network efficiency, and ultimately optimizing wireless network performance. The traditional wisdom is to explicitly formulate resource allocation as an optimization problem and then exploit mathematical programming to solve it to a certain level of optimality. However, as wireless networks become increasingly diverse and complex, such as high-mobility vehicular networks, the current design methodologies face significant challenges and thus call for rethinking of the traditional design philosophy. Meanwhile, deep learning represents a promising alternative due to its remarkable power to leverage data for problem solving. In this talk, I will present our research progress in deep learning based wireless resource allocation. Deep learning can help solve optimization problems for resource allocation or can be directly used for resource allocation. We will first present our research results in using deep learning to solve linear sum assignment problems (LSAP) and reduce the complexity of mixed integer non-linear programming (MINLP), and introduce graph embedding for wireless link scheduling. We will then discuss how to use deep reinforcement learning directly for wireless resource allocation with application in vehicular networks.
2.Deep Learning in Physical Layer Communications
【Abstract】
It has been demonstrated recently that deep learning (DL) has great potentials to break the bottleneck of the conventional communication systems. In this talk, we present our recent work in DL in physical layer communications. DL can improve the performance of each individual (traditional) block in the conventional communication systems or jointly optimize the whole transmitter or receiver. Therefore, we can categorize the applications of DL in physical layer communications into with and without block processing structures. For DL based communication systems with block structures, we present joint channel estimation and signal detection based on a fully connected deep neural network, model-drive DL for signal detection, and some experimental results. For those without block structures, we provide our recent endeavors in developing end-to-end learning communication systems with the help of deep reinforcement learning (DRL) and generative adversarial net (GAN). At the end of the talk, we provide some potential research topics in the area.
3.Machine Learning Interference Management
【Abstract】
In this talk, we discuss how machine learning algorithms can address the performance issues of high-capacity ultra-dense small cells in an environment with dynamical traffic patterns and time-varying channel conditions. We introduce a bi adaptive self-organizing network (Bi-SON) to exploit the power of data-driven resource management in ultra-dense small cells (UDSC). On top of the Bi-SON framework, we further develop an affinity propagation unsupervised learning algorithm to improve energy efficiency and reduce interference of the operator deployed and the plug-and-play small cells, respectively. Finally, we discuss the opportunities and challenges of reinforcement learning and deep reinforcement learning (DRL) in more decentralized, ad-hoc, and autonomous modern networks, such as Internet of things (IoT), vehicle -to-vehicle networks, and unmanned aerial vehicle (UAV) networks.
Bio:
Dr. Geoffrey Li is a Professor with the School of Electrical and Computer Engineering at Georgia Institute of Technology. He was with AT&T Labs – Research for five years before joining Georgia Tech in 2000. His general research interests include statistical signal processing and machine learning for wireless communications. In these areas, he has published around 500 referred journal and conference papers in addition to over 40 granted patents. His publications have cited by 37,000 times and he has been listed as the World’s Most Influential Scientific Mind, also known as a Highly-Cited Researcher, by Thomson Reuters almost every year since 2001. He has been an IEEE Fellow since 2006. He received 2010 IEEE ComSoc Stephen O. Rice Prize Paper Award, 2013 IEEE VTS James Evans Avant Garde Award, 2014 IEEE VTS Jack Neubauer Memorial Award, 2017 IEEE ComSoc Award for Advances in Communication, and 2017 IEEE SPS Donald G. Fink Overview Paper Award. He also won the 2015 Distinguished Faculty Achievement Award from the School of Electrical and Computer Engineering, Georgia Tech.
Li-Chun Wang (M'96 -- SM'06 -- F'11) received Ph. D. degree from the Georgia Institute of Technology, Atlanta, in 1996. From 1996 to 2000, he was with AT&T Laboratories, where he was a Senior Technical Staff Member in the Wireless Communications Research Department. Currently, he is the Chair Professor of the Department of Electrical and Computer Engineering and the Director of Big Data Research Center of of National Chiao Tung University in Taiwan. Dr. Wang was elected to the IEEE Fellow in 2011 for his contributions to cellular architectures and radio resource management in wireless networks. He was the co-recipients of IEEE Communications Society Asia-Pacific Board Best Award (2015), Y. Z. Hsu Scientific Paper Award (2013), and IEEE Jack Neubauer Best Paper Award (1997). He won the Distinguished Research Award of Ministry of Science and Technology in Taiwan twice (2012 and 2016). He is currently the associate editor of IEEE Transaction on Cognitive Communications and Networks. His current research interests are in the areas of software-defined mobile networks, heterogeneous networks, and data-driven intelligent wireless communications. He holds 23 US patents, and have published over 300 journal and conference papers, and co-edited a book, “Key Technologies for 5G Wireless Systems,” (Cambridge University Press 2017).
同時也有1部Youtube影片,追蹤數超過13萬的網紅暗網仔出街,也在其Youtube影片中提到,Nordvpn會有3折優惠再送一個月全免費service給你!!! 請使用以下連結: https://nordvpn.com/deepwebstreet 優惠碼: deepwebstreet Instagram: https://www.instagram.com/dw_kid12/ Face...
「general linear model」的推薦目錄:
- 關於general linear model 在 國立陽明交通大學電子工程學系及電子研究所 Facebook 的最佳解答
- 關於general linear model 在 暗網仔出街 Youtube 的最讚貼文
- 關於general linear model 在 General Linear Model - GAMLj 的評價
- 關於general linear model 在 How does OLS regression relate to generalised linear modelling 的評價
- 關於general linear model 在 JuliaStats/GLM.jl: Generalized linear models in Julia - GitHub 的評價
general linear model 在 暗網仔出街 Youtube 的最讚貼文
Nordvpn會有3折優惠再送一個月全免費service給你!!!
請使用以下連結: https://nordvpn.com/deepwebstreet
優惠碼: deepwebstreet
Instagram: https://www.instagram.com/dw_kid12/
Facebook: https://www.facebook.com/deepwebkid/?modal=admin_todo_tour
訂閱: https://www.youtube.com/channel/UCKC6E5s6CMT5sVBInKBbPDQ?sub_confirmation=1
暗網? 陰謀論?: https://www.youtube.com/watch?v=W5RVLpFkAKQ&list=PLGzW5EwcApFuqKoowMHS9v8W34vIPyrtk
鬼故事: https://www.youtube.com/watch?v=H4rmkFI1ik0&list=PLglqLngY6gv5BCwaoP-q6DOwUmw1lIusF
我的100K成長故事: https://www.youtube.com/watch?v=Kdhtp6A6YJE
破解Kate yup事件是假的! 不是綁架! 不要被騙! (Facebook上的證據): https://www.youtube.com/watch?v=2NJVt56ORWo&t=2s
曼德拉效應: https://www.youtube.com/watch?v=OMutzRIE_uE&list=PLglqLngY6gv5BCwaoP-q6DOwUmw1lIusF&index=17&t=5s
深刻個人經歷: https://www.youtube.com/watch?v=4Roa6Vs1qWc&list=PLglqLngY6gv4mm_doLUUJx4zq5KvLJ2VE
車志健 Brian Cha
我是 ‘啊?.’ 本來我人生沒有什麼方向. 有個wung大的創業夢但沒有實踐的歩jauw. 又常常有壓力. 直到我有一天在Youtube看到一個廣告. 不是他! 是Nordvpn!
如果..我突然之間一無所有! 有黑客入侵我iphone, 以前的我會非常擔心. 現在有Nordvpn我只需要一部手機, 全球59個國家5070個不同server適用. 雖然下jou Nordvpn沒有每天收入9億, 但你都唔洗gum luw luw jue, 因為用到多個網絡我機場, 咖啡, 洒店都不用”quit youtube囉!”
By the way 就算你的名字是不是叫做kelvin, 無論用windows, mac或Android的機. 你隻手指按下面連結一個juy, 然後輸入優惠碼 ‘deepwebstreet’ 就會有3折優惠和一個月全免費service送給你! Good boy無論你是上網學教你創業課程, 或因為yik ching常常需要上網工作, 一個nordvpn app在一部手機?面就改變左我一生. 亦可以改變你一生.
Start
“坦白d講, 你地成日話唔中意d廣告. 用左Nordvpn set我呢度加拿大. 你唔想睇到的廣告就自自然然睇唔到架啦!”
Nordvpn.
暗網仔出街的觀眾大家好! 大概10年前我曾經有一個暑假做過一個賣一套套相當名貴廚房刀的door to door salesman. tuw過朋友親戚的介紹成功在大小的廚房puy蘋果, 切繩, 甚至剪爆un仔.
過了那個暑假之後我ling ng到整份工作的可疑之處. 一個領導人找其他人入會做sales然後收yung是chun ait sik. 之後我沒有做這份工作了, 但坦白講刀我現在還會用.
至少有一個實質產品.
幾年前社交媒體上開始出現一堆堆自ching是 “entrepreneur” 的年輕人. 好有型地主要用相片去sell一個 “我很成功這個樣子” 的lifestyle. 內容大多數都是教你如何run一個成功的business. 但可能那個人本身是從來也沒有run過一個成功的business. 多數他唯一的business就是教你如何run一個business.
或者一個人生教練可能實際年齡只有22 suey.
我叫這個做 “Brian Cha現象” 我不是針對Brian, 我用brian的名字因為大家容易一點明白, 因為他們所有人用的business model都是這個‘new non-linear marketing approach’
第一歩: Youtube廣告是大家認識Brian的主要kuey do. 廣告片很多超過百萬點擊但可能好少Like, 可能dislike仲多. 之前外國一段時間一些bin tai的小朋友Youtube頻道會有比較負面的留言, 這種contextual advertising能找一些特定興chuey, 年齡Chung, 影片類型的人張廣告放在他們眼前.
第二步: 明星效應一定伴隨第一歩. 歐美做創業家跟做演員或運動員都一樣是所謂 ‘kuw到女’ 的職業. 導致很多年hing人崇拜.
第三歩: Brian個人網ji需要比email. 有了你email後就不停market產品, seminar等等東西比你. 是最古老的email marketing
第四歩: 2020全新教學: 5個簡單歩驟把生意網絡化就是重點.
雖然在加拿大我看不到Brian cha的廣告. 但可以說整天有無數無數個用 ‘non-linear marketing’ 由教你用Facebook 10日jan過百萬到如何溝女都有. 其實像這行最出名的Gary Vaynerchuk真是有一個成功的紅酒生意和媒體公司教人是沒有問題的.
但好像這位tai lopez就是一個恐怖故事了. 他租車, 請一些美女幫他拍片都是為sell他的網上課程67 steps. 廣告的fook koy ching do可以bey美Brian cha. 也有多個Youtuber cheun佢.
我之前買過67 steps不能說aik人. 是有一些道理. 但很多都是general knowledge的一些東西. 不需要這麼貴也沒有改變我一生. 我也跟他有一段故事. 之前有個美女外國friend説IG收到他私suen飛來我們城市見這個女生然後跟他上床. 他的錢是mok後老細比的. 他只是一個frontman.
Gary vaynerchuk has an actual wine business and social media marketing business.
Tai lopez story
我絕對不是説brian是這樣一個人啊!
我自己意見是: 我喜歡學習. 我喜歡網上學習. 所以如果現在我學音樂會到Berkelee music school學. 我之前也以Youtuber身分教過一點剪片, social media東西最後覺得自己末夠料也停了. 這是我的經驗, 不知道brian覺得怎麼樣呢?
I love learning online but try more credible sources
真正想創業的人要知道一個人做公司/品牌是一個lonely game. 是否真正sik合你呢? 有些人像我我覺得一定要創業的. 有些人叫 ‘connector’ sik hup與人接觸一起合作做一些東西出來. 也有些人sik hup幫大公司打工. 我覺得你自己所有這些東西之前的第0歩: know yourself先.
![post-title](https://i.ytimg.com/vi/Cygbv38iIdY/hqdefault.jpg)
general linear model 在 How does OLS regression relate to generalised linear modelling 的推薦與評價
In the context of generalized linear models (GLMs), OLS is viewed as a special case of GLM. Under this framework, the distribution of the ... ... <看更多>
general linear model 在 JuliaStats/GLM.jl: Generalized linear models in Julia - GitHub 的推薦與評價
Generalized linear models in Julia. Contribute to JuliaStats/GLM.jl development by creating an account on GitHub. ... <看更多>
general linear model 在 General Linear Model - GAMLj 的推薦與評價
The module can estimate OLS linear models for any combination of categorical and continuous variables, thus providing an easy way for multiple regression, ANOVA ... ... <看更多>